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Introduction

In the current era, molecular oncology has paved its way in 
the comprehensive cancer care and is playing an important 
role especially in the discovery of novel cellular targets 
to exploit for novel targeted treatments, new biomarkers 
identification for early cancer detection, and to provide 
a better classification of cancers for prognostication 
and treatment selection. The molecular basis of breast 
carcinogenesis involving genetic and epigenetic events that 
result in altered expression of numerous genes is yet not 
fully understood and still needs to be deciphered more, 
which reflects the complexity of the molecular alterations 
that characterize tumor cells.

Most of the breast cancer genome is selectively repressed; 
approximately, 3–5% of genes are active in a particular tumor 
cell that is governed by the regulation of gene expression, 
mostly at the level of transcription. Cellular perturbation 
(transformation) causes changes in gene expression that 

result in the expression of hundreds of gene products and 
the suppression of others. Thus, molecular heterogeneity is 
generated that characterizes tumors of different histology 
and contributes to the variability in outcome and response 
to therapy. Further, significant variability also exists for 
tumors of a specific histologic type. Till recently, in breast 
cancer management, clinical decisions, prognostications, and 
predictions were based solely upon histopathologic analysis, 
or one or small numbers of genes or their expressions 
(proteins) in the tumor tissue, but this approach has been 
inadequate and failed to generate accurate conclusions. There 
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has been an emergence of the new paradigm called “Genomic 
Paradigm,” a shift from the old age “Clinico‑Pathological 
Paradigm” [Figure 1].

The examination of multiple expressed genes provides more 
useful information for both classification and prognostication 
of individual tumors. The microarray methodology, which 
permits the analysis and quantitation of the expression of 
thousands of genes simultaneously, is a powerful technique to 
read the “Molecular Signature” of an individual patient’s tumor, 
and the process is termed gene expression profiling (GEP). 
Analyzing gene expression patterns across individual patients 
with the same disease may reveal molecular differences that 
may allow molecular subclassification, better treatment 
selection, and prognostication. The molecular heterogeneity of 
breast cancer that involves a large number of genes controlling 
cell growth, death, and differentiation warrants studying of 
multiple genetic alterations in concert to cater the patient in 
more precise and tailored way. Various GEPs are now available 
that allows the simultaneous measurement of the expression 
of thousands of genes in a breast cancer cell.

The current applications of the breast GEP are as follows:
•	 Molecular subclassification
•	 Prognostication
•	 Prediction.

Molecular Subclassification (Intrinsic Subtypes)

Several distinct breast cancer subtypes have been identified 
that differ markedly in prognosis and in the therapeutic 
targets they express.[1‑9] The genes that identify these 
subtypes (intrinsic subtypes) are represented in various 
clusters, including gene cluster related to estrogen receptor 
(ER) expression (the luminal cluster), human epidermal 
growth factor 2 (HER2) expression, proliferation, and a unique 
cluster of genes called the basal cluster.

Luminal subtypes
Luminal A and luminal B express genes associated with 
luminal epithelial cells of normal breast tissue that 
typically express luminal cytokeratins 8 and 18. These are 
the most common subtypes and make up the majority 
of ER‑positive breast cancer. The routine clinical assay 
(immunohistochemistry [IHC]) characterizes them by high 
expression of ER, progesterone receptor (PR), and other 
genes associated with ER activation. Further, the luminal A 
and luminal B subtypes have some important molecular and 
prognostic distinctions [Table 1].

Human epidermal growth factor 2‑enriched
The subtype represent up about 10–15% of breast cancers 
and is characterized by high expression of the HER2 and 
proliferation gene clusters, low expression of luminal clusters 
genes (CK‑7, 8, 18, 19, X‑box‑binding protein 1, GATA‑binding 
protein 3, hepatocyte nuclear factor 3, Annexin XXXI, and 
ER 1). These tumors are most often positive for HER2 and 
negative for ER and PR. About 30% of HER2‑enriched tumors 
are clinically HER2‑negative, and on the other, 50% of clinical 
HER2‑positive breast cancers are HER2‑enriched. They have 
a poorer prognosis compared with luminal A tumors and are 
predictive of response to herceptin.

Estrogen receptor‑negative subtypes
ER‑negative subtypes – this includes multiple subtypes, such 
as basal‑like, claudin‑low,[1] and interferon‑rich,[10] molecular 
apocrine. The basal‑like subtype has some similarity in 
gene expression to that of the basal epithelial cells of 
normal breast tissue (expressing CK‑5, 6, 17, integrin‑β4, 
laminin, and fatty‑acid binding protein 7.4) and represent 
about 15–20% of breast cancers. It is characterized by low 
expression of the luminal and HER2 gene clusters thus 
similar to triple‑negative breast cancers (TNBCs). However, 
there is a significant discordance (up to 30%) between the 
basal‑like and TNBC. These subtypes exhibit high frequency 
of BRCA1 mutations, increased genomic instability, high 
histologic grade, and have a poorer prognosis compared 
with luminal A tumors.

Claudin‑low breast cancer
Claudin‑low breast cancer represents 5% of breast cancers and 
is characterized by overexpression of genes associated with 
epithelial‑mesenchymal transition‑like chemokine ligand 12, 
vimentin and fibroblast growth factor 7, Krüppel‑like factor 2, 
integrin α5, moesin, vascular endothelial growth factor‑C, 
matrix metalloproteinase‑9, CD79b, CD14, CD44+/CD24−, 
and ALDH1A1. This subtype frequently exhibits metaplastic 
and medullary differentiation and are similar to TNBC with a 
poorer prognosis compared with luminal A tumors.Figure 1: Changing Genomic Paradigm
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Interferon‑rich and molecular apocrine subtypes
These subtypes are rare, characterized by interferon‑regulated 
genes, such as STAT1 and activation of androgen receptor 
signaling, respectively.

Normal‑like subtypes
Normal‑like subtypes are typified by similar gene expression 
pattern as the normal breast. It yet remains enigmatic as 
to whether it represents a separate subtype or a technical 
artifact introduced by low tumor cell composition of the 
sampled specimen.

Tools for molecular classification
For identification of four‑basal‑like, HER2‑enriched, 
luminal A and luminal B subtypes, tools called single 
sample predictors (SSPs) are available including Blueprint, 
SSP203 (500 genes), SSP2006 (306 genes), and predictor 
analysis of microarray 50 (PAM50) (50 genes).[6,11,12] The 
SSPs utilizes large sets of tumor‑intrinsic genes, which 
are analyzed by hierarchical clustering followed by nearest 
centroid classification. The limitation includes subtyping 
is dependent upon the type of SSP used for analysis, 
another intrinsic subtype called normal breast‑like subtype 
is considered invalid and HER2 enriched subtype does 
not encompass all cases classified as HER2‑positive by 
IHC/fluorescence in situ hybridization.

Prognosis

Molecular prognostic profiles are used to predict the local as 
well as distant recurrence rate in early breast cancers while 
receiving endocrine therapy and the absolute benefit of adjuvant 
chemotherapy to reduce the incidence of the recurrence. The 
most commonly used and commercially available molecular 
prognostic profiles are Oncotype DX (21‑gene derived 
recurrence score [RS]), the MammaPrint (Amsterdam 70‑gene 
derived RS), and PAM50 (50‑gene derived RS).

Oncotype DX
The 21‑gene RS is well‑validated prognostic assays. The assay 
calculates RS viz. low (RS < 18), intermediate (RS 18–30), 

or high score (RS > 30) using mathematical formula that 
includes sum of expression of 16 cancer‑related genes plus 
5 reference genes as shown in Table 2, generated using 
reverse‑transcriptase polymerase chain reaction (PCR) on 
the formalin‑fixed, paraffin embedded (FFPE) blocks, which 
are optimized to predict the locoregional and distant 
relapse despite tamoxifen therapy. Further, RS is able to 
predict relapse with aromatase inhibitors in postmenopausal 
women. The RS was validated in various large, independent 
retrospective multicenter trials involving over 3300 patients. 
The key study includes NSABP study B‑14, NSABP B‑20, Kaiser 
Permanente study, Southwest Oncology Group (SWOG) 
8814 study. Currently, prospective trials (i) Oncotype DX 
Trial Assigning IndividuaLized Options for Treatment (Rx) 
(TAILORx) trial and (ii) RxPONDER trial (SWOG S1007) are 
ongoing to validate the predictive potential of Oncotype 
DX.[13‑20]

Oncotype DX is included in guidelines‑St Gallen, European 
Society for Medical Oncology, American Society of Clinical 
Oncology, National Comprehensive Cancer Network as a 
decision tool enabling the identification of patients who are 
most likely to benefit from adjuvant chemotherapy and is 
indicated for women with node‑negative, ER‑positive breast 
cancer to determine the prognosis in patients recommended 
proceeding with at least a 5‑year course of endocrine therapy.

Amsterdam 70‑gene profile
US Food and Drug Administration approved commercially 
available test, known as MammaPrint, uses microarray 
technology to analyze 70 genes extracted from either FFPE 
tissue or fresh frozen tissue. It is recommended for early 
breast cancer of all ages with tumors size <5 cm, with the 
lymph node involvement up to three nodes. Unlike Oncotype 
DX, it can be used to determine the prognosis in patients 
with breast cancer regardless of hormone receptor-status 
and in patients with the HER2 positive disease. MammaPrint 
categorizes patient into two groups (i) low risk (ii) and high 
risk group for breast cancer distant relapse within 10 years 
of the initial diagnosis.

The 70 genes can be classified into various categories as 
shown in Table 3.

The clinical validity of the 70‑gene prognostic profile has been 
demonstrated in multiple studies, including retrospective 
analysis of 295 consecutive invasive breast tumors from 
the tumor bank at the Netherlands Cancer Institute, 
302 patient data contributed by the TRANSBIG consortium 
(5 participating European hospitals), prospective analysis of 
427 women in The MicroarRAy PrognoSTics in Breast CancER 

Table 1: Characteristics of Luminal Subtypes

Luminal A Luminal B
Incidence (%) 40 20
ER‑related genes High Relatively low
HER2‑related genes Low Variable
Proliferation‑related genes Low High
Prognostic significance Good Poor
Prediction to endocrine Rx Highly sensitive Relatively less sensitive
Prediction to cytotoxic Rx Less sensitive Less sensitive
ER  ‑  Estrogen receptor; HER2  ‑  Human epidermal growth factor 2
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(RASTER) trial. Currently, a multicentric prospective The 
Microarray in Node negative and 1–3 positive lymph node 
Disease May Avoid ChemoTherapy (MINDACT) clinical trial is 
ongoing which includes 6000 patients from 93 participating 
institutions in nine European countries, the results of which 
are awaited.[21‑29]

Predictor analysis of microarray 50 risk of recurrence score
The PAM50 is a 50‑gene test utilizes microarray and 
quantitative reverse transcription PCR technology on FFPE 
tissue. The PAM50 test characterizes an individual tumor by 
intrinsic subtype and along with tumor size, generates the 
risk of recurrence (ROR) score that can stratify patients with 
ER‑positive, node‑negative disease into high, medium, and 
low subsets.[11,30,31]

The clinical utility of the PAM50 and ROR score has been 
demonstrated in several studies[31‑34] including ATAC trial 
(adjuvant tamoxifen or anastrazole), a retrospective analysis 
of 1017 postmenopausal patients and Austrian Breast Cancer 
Study Group 8 (ABCSG‑8) trial, a retrospective analysis of 
1478 postmenopausal patients, where ROR predicted the 
risk of distant recurrence at 10 years in both node‑negative 

and node‑positive disease and added significant prognostic 
information in all subgroups of patients.[34,35]

Other Assays

Rotterdam 76‑gene signature
The Rotterdam/Veridex 76‑gene prognostic signature uses 
separate prognostic gene sets for ER‑negative (16 genes) 
and ER‑positive (60 genes) disease.[36] The 76 prognostic 
gene signature has been evaluated in an independent set of 
171 tumors, demonstrating 93% sensitivity and 48% specificity 
predicting distant metastasis‑free survival independent of 
clinical variables. Currently, the test is not commercially 
available and warrant more studies to validate the clinical 
utility of this test prior to its use in clinical practice.

Genomic grade index
Meant for improving prognostic value of tumor grading, which 
involves analysis of gene expression signature of 97 genes 
that distinguish histological Grade 1 from Grade 3 tumors[37] 
and reclassify Grade 2 tumors into two groups of high versus 
low ROR.[37] Subgroup analysis of 204 patients treated in the 
PACS01 trial, genomic grade index outperformed histologic 
grade and other proliferation markers (Ki67 messenger 
RNA and protein, mitotic activity index) as a predictor of 
disease‑free survival.[38] Further studies are required for its 
clinical utility.

Molecular grade index
Another tumor grading multigene assay reclassifies Grade 2 
tumors into Grade 1‑like and Grade 3‑like tumors. It involves 
5‑gene expression index to stratify patients into low or high 
ROR.[39]

Breast cancer index
Breast cancer index (BCI) is a combination of two profiles, 
the HOXB13‑to‑IL17BR expression ratio (H: I ratio) and the 
molecular grade index. Various studies have validated the BCI 
as a predictor of endocrine responsiveness among patients 
with ER‑positive breast cancer[39] and of prognosis.[39,40] Yet 
again, BCI clinical utility remains to be determined.

Endopredict
Involves RNA‑based analysis of 11 genes (8 cancer related 
and 3 reference genes) to calculate a prognostic score. Its 
prognostic value is independent of conventional prognostic 
factors[41] that was validated using the data from two ABCSG 
trials (ABCSG‑6 and ABCSG‑8). However, the performance of 
EP as compared with other prognostic tests has not been 
evaluated.

Table 2: 21 Gene Signature, OncotypeDx

Genes category Genes
Cancer‑related 
genes[16]

Proliferation Ki67, STK15, Survivin, CCNB1, MYBL2
Invasion MMP11. CTSL2
HER2 GRB2, HER2
Estrogen ER, PGR, BCL2, SCUBE2
Other cancer‑ 
related genes

GSTM1, CD68, BAG1

Reference 
genes[5]

ACTB, GAPDH, RPLPO, GUS, TFRC

HER2  ‑ Human epidermal growth factor 2

Table 3: 70 Gene Signature, MammaPrint

Biological function MammaPrint 
gene count

Metabolism 7
Cell cycle and DNA replication 12
Extracellular matrix adhesion and remodeling 5
Growth, proliferation, transformation, and cell death 17
General signal transduction and intracellular transport 3
Growth factor 7
Motility or actin filament related 5
Intracellular hydrolase 1
Immune response 1
Neuropeptide 1
Predicted transmembrane protein 2
Predicted transcriptional control or DNA binding protein 5
Unknown 4
Total 70
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Limitation of the multigene assays
There is a lack of level I evidence. The evidence is based on 
the retrospective analysis; results of the two randomized 
prospective trials, MINDACT and TAILORx are still awaited. 
Based on the TAILORx interim analysis of the women in the 
lowest- risk group suggests that at 5 years, rates of distant 
relapse-free survival were 99.3 percent, of invasive disease 
free survival were 93.8 percent, and of overall survival were 
98.0 percent. These results provide prospective evidence that 
the gene expression test identifies women with a low risk of 
recurrence who can be spared chemotherapy.[19] The list of 
genes in various assays is not stable with negligible overlap 
but have similar performance and a good concordance. 
The bias of determining the prognosis correlates with the 
proliferation‑/cell cycle‑related genes, thus, multigene assay 
serves mere surrogates of proliferation. The application is 
limited for the ER‑positive and HER2‑negative breast cancers 
but cannot determine the prognosis for the early stage TNBC. 
Almost 40–60% of clinically intermediate‑risk patients are 
found to be intermediate‑risk RS group, thus the clinical 
dilemma where prognostication and management remains 
unclear. The prediction potential is valid for short‑term 
distant recurrence (<5 years) but indeterminate prognostic 
potential after 5–10 years of follow‑up. This multigene assay 
doesnot consider analysis of tumor tissue microenvironment 
including stromal cells, inflammatory infiltrate, and normal 
breast tissue. The percentage of nonneoplastic cells has 
a substantial impact on the final expression profile and 
meaningful prognostic signatures. Thus, next generation 
assays taking this analysis into account and overcoming the 
limitation are under development.

Second generation gene expression signatures
Most of the first generation signatures as discussed above 
were developed based on the epithelial cancer cells, and the 
contribution of stromal cells was not taken into account. 
The accuracy of gene predictors assay may be influenced 
by varying proportions of stromal components,[42] and 
comprehensive GEP of each cell type has demonstrated 
that at the transcriptome level, changes occur in epithelial, 
myoepithelial, and stromal cells.[43] Various research groups 
have used prognostic signatures derived from the profile of 
stromal cells,[44‑46] by analyzing the immune system[44,47,48] or 
cancer‑related pathways[49‑51] as shown in Table 4.

Prediction

In routine clinical practice, only ER and HER2 are used as 
predictive markers for the selection of patients likely to 
respond to endocrine therapy and trastuzumab, respectively. 
Multigene assay is currently being used/experimented 
to provide additional information that could predict the 

response or lack of response to treatments and determine 
the most effective regimen for a specific patient or subgroup 
of patients.

Multigene markers of response to chemotherapy
Oncotype DX‑RS predicts the benefit from the addition of 
chemotherapy to tamoxifen. This was evident in NSABP 
B‑20 trial where node‑negative, ER‑positive breast cancers 
were treated with Cyclophosphamide, Methotrexate 
Fluorouracil (CMF) in addition to tamoxifen. The 10 years 
distant disease‑free (DDF) survival based on RS were high 
RS‑88 versus 60% (relative risk [RR] 0.26, 95% confidence 
interval [CI] 0.13–0.53); low RS‑96 versus 97% (RR 1.31, 95% 
CI 0.46–3.78); and intermediate RS – 90 versus 91% (RR 
0.61, 95% CI 0.24–1.59). In SWOG 8814 trial node positive, 
ER‑positive breast cancer were treated with CAF in addition 
to tamoxifen that resulted in DDF at 10 years high RS – DDF 
55 versus 43%, (hazard ratio [HR] 0.59, 95% CI 0.35–1.01) and 
overall survival‑73 versus 54%, (HR 0.56, 95% CI 0.31–1.02). 
These results were not seen among women with a low or 
intermediate RS.

Various research groups using supervised approaches 
have developed multigene signatures designed to predict 
response in patients receiving either chemotherapy or 
endocrine therapy. Several studies have attempted to 
chemotherapy by comparing gene expression profiles 
between high sensitivity and low‑responsive tumors.[52‑58] 
The majority of the studies focused on identification of 
multigene signatures predicting response to neoadjuvant 
chemotherapy on the analyzed tumor samples obtained from 
biopsies taken at diagnosis before initiation of chemotherapy 
as shown in Table 5.

Despite the promising results, the signatures of chemotherapy 
sensitivity have so far had limited use in clinical practice. None 
of the different predictors of chemosensitivity is commercially 
available, and additional evidence is still required before they 
can be implemented in clinical practice.

Multigene markers of response to endocrine therapy
ER status has an important negative predictive value for 
evaluating the response to antiestrogen therapy. However, ER 
expression alone fails to predict which ER‑positive tumor will 
respond or be resistant to different modalities of endocrine 
therapies. Various microarray‑based gene expression 
signatures to predict the outcome of tamoxifen‑treated 
patients have been developed by various research groups as 
shown in Table 6.

Sensitivity to endocrine therapy (SET) index was developed 
in a large series of ER‑positive breast cancers was based on 
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the principle that expression of genes correlated with ER 
may better predict response to endocrine treatment than 
ER expression alone.[59] Analysis of 165 genes coexpressed 
with ER, the SET index seems to be predictive of benefit from 
endocrine therapy independently of the inherent prognosis of 
the tumor and to identify a subset of tumors associated with 
an excellent prognosis and no relapse. Studies evaluating the 
clinical relevance of the SET index are warranted to expand 
its indications in clinical practice.

Future Trends

Microarray‑based GEP analysis has undoubtedly influence 
our understanding of breast cancer biology, the concept of 
the breast cancer heterogeneity and molecular subtypes. 
The incorporation of molecular assays into the treatment 
planning strategy of breast cancer continues to be a work 
in progress, and this approach is evolving quickly due to 
strong scientific evidence and expected to be to become the 
standard of practice in the near future. Newer technologies 
like next generation sequencing, where repertoire of 
genetic aberrations in a tumor can be assessed in a single 
experiment, are expected to complement the microarray 
based GEP, especially for prognosis and prediction. Integrative 
approaches, where combining genetic, epigenetics, 
transcriptomic, proteomic, and metabolomic information, 
are comprehensive in nature may lead to the creation of 

Table 4: Second Generation Gene Signatures

Category Gene signature 
(second generation)

Signature development/rationale

Stroma 
signatures

PLAU module[44] PLAU represent a prototype gene set for tumor invasion/metastasis are analyzed along with other 
gene sets for different biological processes (ER for ER signaling, HER2 for HER2 signaling, AURKA for 
proliferation, CASP3 for apoptosis, STAT1 for immune response, VEGF for angiogenesis)

SDPP[45] A stroma‑derived predictor using three genes clusters was developed after ranking the genes by their 
independent prognostic ability using a multivariate logistic regression with clinical and biological 
variables as covariates

DCN module[46] Decorin gene set is used representing stroma was selected and used as a variable in a multivariate 
regression model

Immune‑related 
signatures

STAT1 module[44] STAT1 represent a prototype gene set for immune response is analyzed along with other gene sets for 
different biological processes

IR module[47] A subclass of ER ‑ tumors that over‑express immune response genes are known to have good 
prognosis independent of lymph nodes status or lymphocytic infiltration are analyzed

IgG, HCK, MHC‑I, MHC‑II, LCK, 
STAT1, interferon metagenes[48]

Seven metagenes were derived from unsupervised hierarchical clustering of genes in 12 primary invasive 
breast cancer datasets, where each metagenes is associated with a cell type and/or immunological state

Pathways 
signatures

PIK3CA‑GS[49] A PIK3CA mutation‑associated gene signature developed based on the differentially expressed genes 
between PIK3CA mutant and wild‑type ER+/HER2− breast cancers

IGF‑I gene signature[50] IGF‑I gene expression signatures were developed based on the differential gene expressions after 
treatment of MCF‑7 breast cancer cell line with IGF‑I

MYC, RAS, E2F3, SRC, and 
b‑CATENIN signatures[51]

Gene expression signatures that reflect the activity of a given pathway were identified that 
correlated with the classification of human primary mammary epithelial cell cultures samples 
into oncogene‑activated/deregulated versus control

ER  ‑  Estrogen receptor; HER2  ‑  Human epidermal growth factor 2; VEGF  ‑ Vascular endothelial growth factor; IGF‑I  ‑  Insulin‑like growth factor‑I

Table 5: Gene Signatures for Response Prediction to Neoadjuvant Chemotherapy

Research groups Gene signature Technology platform Neo‑adjuvant chemotherapy Accuracy (%)
Chang et al.[52] 92 genes cDNA microarray Docetaxel 88
Ayers et al.[53] 74 genes cDNA microarray T/FAC 78
Iwao‑Koizumi et al.[54] 85 genes RT‑PCR Docetaxel 80.7
Hess et al.[55] 30 genes cDNA microarray T/FAC 76
Thuerigen et al.[56] 512 genes cDNA microarray G‑ET 88
Farmer et al.[57] Stromal metagenes cDNA microarray FEC 65
Gianni et  al.[58] 86 genes RT‑PCR/DNA 

microarray
TA ‑

cDNA  ‑  Complementary DNA; RT‑PCR  ‑  Reverse‑transcriptase polymerase chain reaction; FAC  ‑  Fluorouracil, doxorubicin, cyclophosphamide; FEC  ‑  Fluorouracil, epirubicin, and 
cyclophosphamide; G‑ET  ‑  Gemcitabine, Epirubicin, Docetaxel; TA  ‑  Paclitaxel, Doxorubicin

Table 6: Gene Signatures for Response Prediction to Endocrine 
Therapy

Research group Signature Technology platform
Symmans et al.[59] SET index (165 

genes)
Microarray

Jansen et al.[60] 44 genes Microarray
Oh et al.[61] 822 genes Microarray
Loi et  al.[62] 181 genes Microarray
SET  ‑ Sensitivity to endocrine therapy
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a newer breast cancer classification systems with a better 
understanding of the biology of the disease that have more 
clinical relevance.
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